# Ad Exchange: General Envy-free Auctions with Mediators

Oren Ben-Zwi Monika Henzinger Veronika Loitzenbauer Research Group Theory and Applications of Algorithms University of Vienna, Austria veronika.loitzenbauer@univie.ac.at



### **Mediators' Demand**

- mediators have to repeat accepted offers
- input: central auction prices p<sub>M</sub>, set D<sup>=</sup><sub>M</sub> of accepted items for M
  result: returns set D<sub>M</sub> in demand of M with D<sup>=</sup><sub>M</sub> ⊆ D<sub>M</sub> and stores result (μ', p') of local auction
- The local auction is run within the subroutine localMinWalrasianEquilibrium. It returns the local Walrasian equilibrium for the bidders of mediator M with the smallest prices  $p' \ge p_M$  that matches all items jin  $D_M^=$  with  $p_M(j) > 0$ . For this we can use the algorithm and results

started with DoubleClick Ad Exchange (Google) in 2007
Facebook and Amazon started 2012, Ebay 2013

- market volume recently estimated to \$2 billion
- The utility of a bidder for an item set S is defined as valuation(S) price(S).
- The **revenue** of a mediator for item set *S* is revenue(*S*) = local auction prices(*S*) central auction prices(*S*) (i.e. money received from bidders minus money paid to ad exchange) if the local auction outcome for item set *S* is globally envy-free for its bidders and revenue(*S*) = -1 otherwise.

• The **demand** is the set of item sets with highest utility / revenue.

A **general envy-free** (or **Walrasian**) **equilibrium** is a price vector and an allocation s.t. all bidders and mediators receive a set in their demand and all items with positive price are sold.

#### Does a general envy-free equilibrium always exists?

from Dütting et al. (2011). • ( $\mu'$ , p') can be initialized with ( $\emptyset$ , 0)

**procedure** demandInclAccepted( $p, D^=$ )  $\hat{p}(j) \leftarrow \max(p'(j), p(j)) \quad \forall j$   $\hat{\mu} \leftarrow \{(i, j) \in \mu' \mid j \in D^=\}$   $(\mu', p') \leftarrow \text{localMinWalrasianEquilibrium}(\hat{\mu}, \hat{p})$  **save**  $(\mu', p')$ **return**  $\{j \mid \exists (i, j) \in \mu'\} \lor \{j \in D^= \mid p(j) = 0\}$ 

Example

$$v(1) = 30, v(2) = 4$$
  $p'_{M_1}(1) = 30$   $p(1) = 15$   
 $v(1) = 40, v(2) = 0$   
 $v(1) = 20, v(2) = 10$   $p'_{M_2}(2) = 5$   $p(2) = 5$ 

• revenue<sub> $M_1$ </sub> = 15, revenue<sub> $M_2$ </sub> = 0

competition between ad networks ⇒ revenue for ad exchange
 competition within ad network ⇒ revenue for ad network

#### • Can it be computed?

### Main Result

If all bidders have **unit demand** valuations, then there is a way for the mediators to compute their bids for the central auction and the prices for their bidders such that a **general envy-free equilibrium always exists**.

unit demand valuation:  $v(S) = \max_{j \in S} v(j)$ 

### **Central Auction**

- input: valuations of bidders (only known to their mediator)
- **result:** assignment  $\mu$  to mediators, central auction prices p, assignments  $\mu'_{M_i}$  to bidders, and local auction prices  $p'_{M_i}$  s.t. bidders and mediators are envy-free and all items with positive price are sold

# **Further Results**

The minimal demand sets of a mediator form the **bases of a matroid** (for any given price vector).

 similar result for gross-substitute valuations in Gul and Stacchetti (2000)

If all bidders have **additive valuations**  $v(S) = \sum_{j \in S} v(j)$ , then

- all mediators have additive valuations,
- a Walrasian equilibrium always exists,
- and it can be computed with multiple second price single item auctions.

## **Open Questions**

Does a strongly polynomial time mechanism exist?
Can the result be generalized to other valuation classes?

each mediator offers  $p(j) \leftarrow 0$  to each item jeach item accepts one offer and rejects all others **while** some offer rejected **do for all** mediators  $M_i$  **do for all** items j **do if** j has accepted  $M_i$ 's offer **then**  $p_{M_i}(j) \leftarrow p(j)$ **else**  $p_{M_i}(j) \leftarrow p(j) + 1$  $D_{M_i} \leftarrow$  demandIncIAccepted $(p_{M_i}, D_{M_i}^=)$ offer  $p_{M_i}$  to all  $j \in D_{M_i}$ each item accepts one highest offer p(j) and rejects all others

based on *salary-adjustment process* by Kelso and Crawford (1982)

# • What if budgets are introduced in the unit demand case?

#### **References and Acknowledgements**

O. Ben-Zwi, M. Henzinger, and V. Loitzenbauer. *Ad Exchange: Query Every Demand*, submitted.

P. Dütting, M. Henzinger, and I. Weber. *An Expressive Mechanism for Auctions on the Web*, WWW 2011, 127–136.

F. Gul and E. Stacchetti. *The English Auction with Differentiated Commodities*, Journal of Economic Theory 92 (2000), no. 1, 66–95.

A. S. Jr. Kelso and V. P. Crawford. *Job Matching, Coalition Formation, and Gross Substitutes*, Econometrica 50 (1982), no. 6, 1483–1504. S. Muthukrishnan. *Ad Exchanges: Research Issues*, WINE 2009, 1–12.

This work was funded by the Vienna Science and Technology Fund (WWTF) through project ICT10-002.